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Abstract. A stochastic algorithm is used to simulate the immiscible displacement of a 
wetting fluid by a non-wetting fluid in a porous medium represented by a two.dimenrional 
network of interconnected capillaries. As the interface advances trapping of the displaced 
fluid occurs thereby creating isolated islands of the displaced fluid. The number of islands 
of sile 5 is found to scale approximately as I-", where a depends on the capillary number 
and the viscosity ratio. The effects of  capillary forcer on the island s i x  distribution are 
also studied. 

1. Introduction 

Fingering is a phenomenon which occurs during the secondary and tertiary recovery 
of oil from underground reservoirs when water (or aqueous solutions containing 
surfactants, polymers, and/or alkali) is injected to displace the oil. The displacing 
phase tends to finger inside the displaced phase due to unfavourable viscosity ratios 
and due to heterogeneities in the reservoir. In some cases the fingers grow all over and 
intersect forming loops thereby leaving large regions of oil surrounded by water. These 
regions, called islands [ I ]  or ganglia [2 ,3 ] ,  account for the so-called residual oil 
saturation. 

In this work, a model which has been developed to simulate the immiscible 
displacement of a wetting fluid by a non-wetting one [4-61 is briefly described. The 
porous medium is represented by a two-dimensional square network of interconnected 
capillaries. The formation of islands of the displaced fluid and their size distribution 
are examined for the transition from viscous fingering to capillary fingering at low 
viscosity ratios and from stable displacement to capillary fingering at high viscosity 
ratios. The island size distribution is studied with respect to the capillary number, Ca, 
in order to examine the effects of capillary forces on the size distribution of the islands. 
The capillary number is defined as the ratio of viscous forces io capillary forces 
(Ca = VfiNw/ y cos e), where V denotes the mean displacement velocity, pNW the 
viscosity of the non-wetting (displacing) fluid, y the interfacial tension, and 8 the 
contact angle. The viscosity ratio, M, is defined as the ratio of the displacing (non- 
wetting) fluid viscosity, pNw, to the displaced (wetting) fluid viscosity, fiw ( M =  
L L N W I P W ) .  

0305-4470/91/163797+09$03.50 0 1991 IOP Publishing Ltd 3191 



3798 

2. The simulation algorithm 

The present model is based on the three basic statistical models for two-fluid immiscible 
displacement flow in porous media, namely DLA (diffusion-limited aggregation), anti- 
DLA [7] and invasion percolation [8,91, as well as on the notion of the phase diagram 
for two-fluid immiscible displacement flow in porous media [lo, 111. 

The DLA model describes the displacement of a viscous Huid by an almost inviscid 

in the displaced Huid, far away from the interface between the displacing and displaced 
fluids, and are allowed to wander on a lattice representing the porous medium with 
equal transition probabilities at each step. The motion of a random walker satisfies 
the Laplace equation for the pressure (i.e. V 2 P = O )  in the porous medium [7]. When 
a random walker reaches an interfacial pore, the interface advances and the displacing 
Buid ixrades !his pore. 

The anti-DLA model describes the displacement of a viscous fluid by a more viscous 
fluid at high capillary numbers. According to this model, random walkers are released 
from within the displacing phase and are allowed to wander only in the region occupied 
by the displacing fluid. When a random walker comes into contact with the interface, 
the interface advances and the displacing fluid invades an interfacial pore. Therefore, 
both ?he DLA and an!i-um.~ models sa!lsfy !he Lap!ace equa!ion for !he pressGre in !he 
displaced and displacing phases, respectively. The absence of random walkers from 
one phase implies negligible viscous pressure gradients in that phase. The DLA and 
anti-oLA models represent two limiting cases of the displacement of one fluid by 
another at high capillary numbers. 

The invasion percolation model describes the displacement of a fluid by another 
immiscible fluid at very low capillary numbers. Under these conditions, only capillary 
forces are significant and the interface moves along the paths of least resistance 
(drainage) or along the paths of largest driving force (imbibition). The driving force 
is represented by the capillary pressure, P r ,  defined by 
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Pr = PNw- Pw = 2 y  cos 0 / r  (1) 

where PNw and Pw denote the pressures at the interface within the non-wetting and 
wetting fluids respectively, and r is the radius of curvature of the (two-dimensional) 
interface, In this case the advancement of the interface is described by the invasion 
percolation model. 

The ranges of validity of the above stochastic models have been mapped by 
Lenormand on a phase diagram having axes representing the viscosity ratio and the 
capillary number [lo, 111. Each of the above three models describes one of the three 
domains of the phase diagram, The boundaries of each domain are expressed by a 
limiting capillary number which is a function of the viscosity ratio and of certain 
physical properties of the network. 

Considering the flow conservation equation at each pore (node) in  the network for 
incompressible flow, namely 

4 

1 Qi=o 
i= I 

and assuming Poiseuille flow in each channel, the flow conservation equation for each 
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phase may be  expressed by 

where g, denotes the hydraulic conductivity of each channel, P the pressure at a central 
pore and P, the pressure at a neighbouring pore. The above equation is satisfied also 
by a random walker which wanders on a square lattice from one pore to a neighbouring 
pore with a transition probability, p ,  which is given by 

P = RI( ,s gj)-' 

Equation (4) results from equation ( 3 )  by solving for P and denoting by P and P, the 
probabilities that the random walker will be  on the central pore and  a neighbouring 
pore i, respectively. When random walkers are allowed to wander in the displaced 
phase and to stick upon contact with the interface, this becomes a form of the original 
DLA model [7]. In contrast, when random walkers wander in the displacing phase this 
becomes a form of the a n t i - o m  model. In homogeneous networks the transition 
probabilities of the random walk are all equal to a since all of the capillaries are of 
the same radius and therefore possess the same hydraulic conductivity. Under these 
conditions, the flow conservation equation is equivalent to the Laplace equation for 
the pressure, i.e. V 2 P  = 0. 

According to the invasion percolation model, the interface advances through the 
channels which provide the lowest capillary pressure which opposes the displacement 
of a wetting fluid by a non-wetting fluid (drainage). 

An algorithm has been developed [4-61 based upon the above stochastic models 
and on the notion of the phase diagram in order to predict the transitions from one 
domain to another on the phase diagram. According to this algorithm, the interfacial 
tension is taken into account whenever the capillary number is less than the capillary 
number corresponding to the DLA or  stable displacement boundaries. Motion of the 
interface occurs according to the DLA, anti-oLA or  invasion percolation mechanisms 
with a phase transition probability [6] expressed in terms of the capillary number and 
the capillary numbers at the boundaries of the phase diagram. Therefore, at a low 
viscosity ratio, in the DLA domain, the interface moves according to the DLA model 
and with the random walkers being allowed to wander with a transition probability, 
p ,  at each step. At a capillary number between the DLA and the invasion percolation 
boundaries, motion of the interface occurs by both the DLA and the invasion percolation 
models. The decision of which model is chosen at each step is made by tossing a coin 
with a probability equal to the phase transition probability [6]. The role of the interfacial 
tension is taken into account by the invasion percolation mechanism. Finally, at a low 
capillary number, beyond the invasion percolation limit, advancement of the interface 
occurs by the invasion percolation mechanism. The transition from stable displacement 
to capillary fingering at high viscosity ratios is described in a similar way according 
to the a n t i - m a  and invasion percolation models. 

According to the present model, (i) only one pore is invaded by the displacing 
non-wetting fluid at a time, (ii) both fluids are incompressible, (iii) trapping of the 
displaced fluid is allowed to occur, (iv) the  interfacial tension is taken into account 
whenever the capillary number is less than the capillary number corresponding to the 
DLA o r  stable displacement boundaries, and  (v) local anisotropy and  heterogeneity 
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resulting from the different sizes of the channels in the network are taken into account 
by the transition probability of the random walker at each step. 

The actual simulations were performed on a square network of size 100 x 100 and 
for the physical parameters corresponding to the experiments of Lenormand er a1 [IZ]. 
The non-wetting fluid is injected on one side of the network (injection side) to displace 
the wetting fluid from the opposite side (recovery side). A trapping algorithm was 
incorporated in order to prevent invasion of trapped areas of the displaced fluid by 
the displacing fluid. The simulation stops when the interface first reaches the recovery 
side. 
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3. Results and conclusions 

Typical simulations are shown in figures 1 and 2 for two particular viscosity ratios and 
for the range of capillary numbers presented in table 1. When the viscosity o f  the 
displacing fluid is less than that of the displaced fluid ( M  = 2 x lo-'), then at high 
capillary numbers (figure l(a, b ) )  the fingers grow towards the exit and only a few 

f a i  

Figure 1. Numerical experiments far M=Z.Ox Ifl-' and different capillary numbers: 
(a )  Ca=S.ox lo-', ( b )  Ca=S.Ox IO-', ( c )  CO = L O X  IO-', ( d )  Ca = 1 . 0 ~  IO-', ( e )  C O  = 
5 . 0 ~  ( f )  co = L O X  IO-'. 
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Figure 2. Numerical experiments for M =5.0 and different capillary numbers: (a) CO = 
3 . 4 ~  IO-', ( b )  Ca=3.4x IO-'. ( c )  Ca=3.4x  IO-', ( d )  CO =1.4x IO-'. ( e )  CO =2.7 xlO-', 
(I) Ca=2 .3~10- ' .  

small islands of displaced fluid are formed. At low capillary numbers, capillary forces 
become significant and the fingers grow all over resulting in more and larger islands 
of trapped displaced fluid as the capillary limit is reached (figure l ( f ) ) .  On the other 
hand, at a high viscosity ratio ( M = 5 )  and at high capillary numbers the front is 
effectively flat and the instabilities are of the pore scale, resulting in a large number 
of islands of small size (figure 2(a ,  b) ) .  At lower capillary numbers (figure 2(c-f)) the 
instabilities grow, resulting in fingers and islands of different sizes. The results presented 
in table 1 in all cases represent the average of 4-6 simulations. 

The number of islands of size s at the end of each run is represented by n(s). The 
size of an island is characterized in terms of a number of pores (nodes). For evaluation 
purposes, the islands are grouped into the specific size ranges I ,  2-3, 4-7, 8-15, .  . . , 
[l], and the number of islands within a particular size range is given by 

where q characterizes the size range. 
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Table 1. Resulls af the simulations 

CO M 01 

5 . 0 ~  2.0x 10-5 2.28 
5 . 0 ~  IO-' 2.0 x 10-5 2.26 
1.0 x lo-' 2.0 x 10-5 2.13 

5.ox 10-q 2.0x 10-5 1.97 
1.0x10-~  2.0x I0.J 2.00 

1.ox Io-" 2.0r 10-5 1.95 
3 .42  10-1 5.0 5.20 
3.4x 10-3 5.0 4.45 

1 . 4 ~  10.' 5.0 2.55 
2 . l X  10.6 5.0 2.00 

3.4x 10-1 5.0 2.77 

2 . 3 ~  IO-' 5.0 1.95 

Following Sherwood's approach [I], the island size distribution is assumed to 

n (s )  oc SC ( 6 )  

Upon combining equations ( 5 )  and (6 ) ,  by replacing sums by integrals, and then 

satisfy the relation 

where a is a function of M and Ca. 

assuming a proportionality constant p, we obtain 

21"1)"-") 

(a-1) 
(1 -2'-") when T9 << 1. (7) = P  

In figures 3(a- f )  and 4 ( a - f )  we plot log2[m(q)] against q (the size range) for the 
data shown in figures I ( a - f )  and 2 ( a - f ) ,  respectively. Only islands surrounded 
completely by the displacing phase are taken into account. The slopes of the best-fitting 
straight lines in figures 3 and 4 correspond to the values of 1 - a in equation (7). The 
values of a determined from these plots are presented in table 1 and they represent 
the average of 4-6 simulations for each case. It may be observed that at a low viscosity 
ratio and high capillary numbers (figure ] ( a - c ) ) ,  the values of a are quite close to 
that predicted by Sherwood [l] ,  namely 2.07. As the capillary number decreases a 
tends to an approximate value of 1.95, which corresponds to the capillary limit. For 
a high viscosity ratio, a decreases from 5.2 at a high capillary number (figure 2 ( a ) )  
and tends to a value of 1.95 at low capillary numbers (figure 2 ( f ) ) .  The high values 
of a in the stable displacement domain (figure 2(a, b ) )  are to be expected since the 
vast majority of the islands here are of the pore size and only a few islands are of 
larger size. When decreasing the capillary number more islands of large size are formed 
and thus the value of a decreases. However, the fitting of the straight lines in figure 
4(a, b )  is not entirely satisfactory, suggesting that a power law behaviour of the island 
size distribution may be questionable in these two cases. 

To better understand some of the consequences of the above distributions it is 
convenient to assume that the number of islands of size s is equal to Ps-" (equation 
(6)) and that the largest island is of size O( Nu.'), where N is the total number of pores 
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1 0  

~ i g ~  3. iog,im(q)j against q iar M = i . O x  i o F  and ai t~erent  capiiiary numbers: 
( U )  CO = 5 . 0 ~  ( h )  CO = L O X  IO-', ( c )  CO = L O X  IO-', ( d l  CO = 1.0 x IO-*. ( e l  CO = 
s . o X I o - ~ ,  ( f )  ca=1.Ox10-~.  
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Figure 4. log,[m(q)l against q far M =5 .0  and different capillary numbers: ( a )  CO= 
3.4X I O - ' ,  ( b )  Ca = 3 . 4 x  IO-', ( c l  CO = 3 . 4 x  IO-'. ( d )  CO = 1 . 4 ~  I O P ,  ( e l  Co=2.7x IO-', 
( J )  C o = 2 . 3 x  IO-'. 



Displacement flow in porous media 3805 

in the network. Then, the total area of the islands will be 

and the areal density of the islands in the entire network will be 

According to the last relation, the density of the island area with respect to the size 
of the network decreases rapidly at high viscosity ratios for large values of a (stable 
displacement domain). However, the density decreases more gradually at lower capil- 
lary numbers (transition domain) and increases slowly in the capillary domain. At low 
viscosity ratios the density increases slowly in the DLA and the transition domains and 
decreases slowly as soon as the capillary limit is reached. 

In  conclusion, a study based on a previous approach [ l ]  has been carried out in 
order to examine the effects of capillary forces on the island size distribution for 
immiscible displacement flow in porous media. From the above results it appears that 
a power law behaviour of the island size distribution exists, at least at low viscosity 
ratios, with a value of a close to 2.0. However, the values of 01 determined from figure 
4 ( a ,  b )  are in question. It is not clear if this represents a limitation of a power law 
behaviour in this domain. The authors believe that further studies on a larger scale 
are required in order to elucidate these matters. 
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